Educational Course Attendance Verification

Course Title/Name: CODE UPDATE

City Course was held in:

MILWAUKEE

Course Password:

????

Course ID#:

6528

Course Date:

02-17-05

List the Name of Each Credential Held by attendee

MP & JP, MPRS, JPRS, UDC PLBG INSP.,

Hours of Credit

3

Credential #:

Code UPDATE Comm 82.36+ Exp. Eff. Date: 12/1/04

- Uniform statewide
- Flexible
- Performance/Prescriptive

Problems & Issues

- •Antiquated Comm 82.36
- •Creation of NR 151
- •Stormwater runoff pollution
- •Uninformed industry

Solutions

- •Revise Comm 82.36 +
- •Educate, educate, educate

Conveyance system 81.01 (62s)

A portion of a drain system that consists of pipes that transport water without detention.

Detention - 81.01 (70m)

The collection and temporary storage of water for subsequent gradual discharge.

Infiltration component -81.01 (133s)

A device or method that is intended to promote the assimilation of water into in situ soil.

<u>Irrigation - 81.01 (136s)</u>

The application of water to the root zone of plants or plantings.

Peak flow, stormwater

- 81.01 (171e)

The largest anticipated flow from a given storm event.

Pre-development

- 81.01 (186s)

The site conditions that existed prior to land disturbance for construction.

10-year, 24-hour storm

- 81.01 (256e)

A specific rain storm event.

Comm 82.36 Revisions

- Allow systems to comply with NR 151
 - 80% reduction in SS
 - Release at 2-year
 storm at pre development 2-year
 storm rate
 - Infiltrate 60-90% of average annual rainfall
 - (with many exemptions, exclusions and prohibitions)

Discharge, Dispersal, Use Comm 82.36 (4)

- Discharge points per 82.38
- Stormwater gravity drains may not combine with clearwater system prior to the storm building drain, except when the clearwater drain is protected by a check valve.

Comm 82.36 (5)

- Input calculations Flow
 - Area divided by X sq ft/gpm
 - Rational method Q = CIA
 - Engineering Analysis
- Input calculations Volume
 - Engineering design w/ minimum 2-yr, 24 hr event and 100-yr, 24 hr storm with a Type II Distribution.
- Additional inputs based on anticipated flows

Comm 82.36 (6) Tables

- 82.36-1 PVC, ASTM D1785, D2665, F891 & ABS, ASTM D1527, D2661, F628
- 82.36-2 PCV, ASTM D3034
- 82.36-3 Cast Iron, ASTM A74 & A888
- 82.36-4 Concrete, ASTM C76 & C14
- 82.36-5 Elliptical Reinforced Concrete pipe

Comm 82.36 (6)

- Vertical conductor may not be smaller than the largest horizontal branch discharging into it.
- Underground, gravity storm min. Dia.
 3-inch.
- Velocity = 1ft/sec flowing full
- Fittings comply with 82.30 (8) & (9)
- Except, 1st 90 downstream of roof drain - horiz. To vert.

Comm 82.36 (6)

Dry detention systems designed and installed to drain within 72 hours.

Comm 82.36 (6)

Detention on paved surfaces or parking lots shall not exceed 6 inches depth, unless prohibited by local ordinance.

Ground surface ponding shall drain within 24 hours after a storm event.

Comm 82.36 (7)

- Subsoil drains to area drain, manhole or storm sewer, trapped receptor or sump with pump
- Foundation drains subject to high groundwater need backwater valve or sump with pump
- Backwater valves accessible for maintenance
- Through or under a building

Comm 82.36 (9) Inlets

Grate openings shall not permit:

- •Vertical piping: the passage of 1/2" sphere for ADA path
- •Vertical piping: entrapment of bicycles, wheelchairs or pedestrians
- •Horizontal piping: the passage of a 6" sphere.

82.36 (10) Roof Drains

- Strainers 4" above deck
- Strainer sizing
 - 1.5 X area
 - 2 X area (flat)
- Overflow systems
 - May not connect to the primary drain system
 - Discharge as per 82.38

82.36 (12) Traps & Vents

- More than one inlet per trap
- Foundation drain to sewer requires trap

Comm 82.36 Revisions

An operation and maintenance plan shall be implemented for all stormwater systems for disturbed areas of one or more acres and installed after December 1, 2004.

82.365 Revisions

- Site & Soil Evaluation
 - CST or Soil Scientist required
- Suitable soil
 - 3 feet of vfs, lvfs, cosl or finer
 - 5 feet of vfs, lcos, cosl or finer
 - 1 foot finer material than coarse sand or finer for roof runoff or where pretreatment is equivalent

Comm 82.365 (3) 82.365-2

COS or coarser	3.6 in/hr
LC sand & sand	3.6 in/hr
Loamy sand	1.63
Sandy loam	.5
Loam	.24
Silt loam	.13
Sandy clay loam	.11
Clay loam	.03
Silty clay loam	.04
Sandy clay	.04
Silty clay	.07
Clay	.07

Comm 82.365 (3) 82.365-3

Ratio of Design	Correction
Infiltration Rates	Factor
1	2.5
1.1 to 4.0	3.5
4.1 to 8.0	4.5
8.1 to 16.0	6.5
16.1 or greater	8.5

Infiltration rate from infiltrative surface = 1.63Infiltration rate from least permeable horizon = .241.63/.24 = 6.79 or 6.8

6.8 from table = 4.5 correction factor Measured infiltration rate = 6 in/hr / 4.5 = 1.3 in/hr

82.365 Calculating Infil. Area

Maximum drain time = 72 hours

10,000 cubic feet of water to infiltrate

Design infiltration rate = 1.3 in/hr

 $1.3 \times 72 = 93.6 \text{ inches} = 7.8 \text{ ft deep}$

200 X 7.8 X x = 10,000 or width is 6.5 ft minimum

82.365 Calculating Infil. Area

Maximum drain time = 72 hours

20,000 cubic feet of water to infiltrate

Design infiltration rate = 2 in/hr

$$X 72 =$$
___ inches = ___ ft deep

$$X = 20,000$$
 or width is ft minimum

82.365 Table 82.365-4

Building	10 ft
Holding tank, storm collection tank	10 ft
POWTS dispersal comp.	5 ft
POWTS holding or treatment component	10 ft
Property line	5 ft
Swimming pool, in grd.	15 ft

82.365 (4) Installation

- Perpendicular to the slope
- Level
- No installation on frozen soil
- Snow cover removed
- In situ soil must be dry enough to allow installation

Comm 82.365 (5) O & M

- No substance discharged that could exceed groundwater standards.
- Exception for chlorides only for preventive action limit.
- Deleterious substances

82.38-1 Discharge Points

Stormwater, groundwater & clearwater

See note "g" under Municipal Sanitary Sewer

Wastewater from water treatment devices

- POWTS, San. Sewer, Ground Surface, Combined sewer, Subsurface dispersal
 - POWTS must be designed for water
 - Ground surface so as not to create nuisance
 - •Subsurface dispersal with plan review for public buildings

82.70-1 Treatment Standards

Subsurface infiltration & irrigation using stormwater as the source	< 15 mg/L oil & grease < 60 mg/L TSS
Surface or spray irrigation using stormwater & clearwater as source	< 10 mg/L BOD5 < 5 mg/L TSS
Vehicle washing, toilet & urinal flushing, etc.	pH 6-9 < 10 mg/L BOD5 < 5 mg/L TSS No detect. fecals > 1 and < 10 mg/L CI

Product Approval Required

84.30 (6) Leaching chambers

85.10 Qualifications

"A soil evaluation for the treatment or dispersal of stormwater regulated under ch. Comm 82 shall be performed by an individual who is either a certified soil tester or one who holds a professional soil scientist license under ch. GHSS 4."

Questions?

Educational Course Attendance Verification

Course Title/Name: CODE UPDATE

City Course was held in:

MILWAUKEE

Course Password:

Storm

Course ID#:

6528

Course Date:

02-17-05

List the Name of Each Credential Held by attendee

MP & JP, UDC PLBG INSP., MPRS, JPRS, CST, UDC PLBG. INSP.

Hours of Credit

3

Credential #: